Copied to
clipboard

G = C42.80D4order 128 = 27

62nd non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.80D4, C42.169C23, C4.99(C4○D8), C4.D822C2, C4⋊C8.206C22, C4.84(C8⋊C22), C42.110(C2×C4), C4.6Q1622C2, C4.4D4.11C4, (C22×C4).745D4, C4⋊Q8.242C22, C42.6C440C2, C4.86(C8.C22), C41D4.128C22, (C2×C42).213C22, C22.3(C4.D4), C23.111(C22⋊C4), C2.14(C23.36D4), C2.16(C23.24D4), C22.26C24.15C2, (C2×C4⋊C8)⋊8C2, (C2×C4○D4).7C4, (C2×D4).32(C2×C4), (C2×Q8).32(C2×C4), (C2×C4).1240(C2×D4), C2.20(C2×C4.D4), (C22×C4).235(C2×C4), (C2×C4).163(C22×C4), (C2×C4).184(C22⋊C4), C22.227(C2×C22⋊C4), SmallGroup(128,283)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.80D4
C1C2C22C2×C4C42C2×C42C22.26C24 — C42.80D4
C1C22C2×C4 — C42.80D4
C1C22C2×C42 — C42.80D4
C1C22C22C42 — C42.80D4

Generators and relations for C42.80D4
 G = < a,b,c,d | a4=b4=1, c4=a2b2, d2=b, ab=ba, cac-1=dad-1=a-1b2, cbc-1=b-1, bd=db, dcd-1=a2b-1c3 >

Subgroups: 284 in 126 conjugacy classes, 48 normal (28 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C8⋊C4, C22⋊C8, C4⋊C8, C4⋊C8, C2×C42, C4×D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C22×C8, C2×C4○D4, C4.D8, C4.6Q16, C2×C4⋊C8, C42.6C4, C22.26C24, C42.80D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4.D4, C2×C22⋊C4, C4○D8, C8⋊C22, C8.C22, C2×C4.D4, C23.24D4, C23.36D4, C42.80D4

Smallest permutation representation of C42.80D4
On 64 points
Generators in S64
(1 53 20 41)(2 50 21 46)(3 55 22 43)(4 52 23 48)(5 49 24 45)(6 54 17 42)(7 51 18 47)(8 56 19 44)(9 57 40 29)(10 62 33 26)(11 59 34 31)(12 64 35 28)(13 61 36 25)(14 58 37 30)(15 63 38 27)(16 60 39 32)
(1 25 24 57)(2 58 17 26)(3 27 18 59)(4 60 19 28)(5 29 20 61)(6 62 21 30)(7 31 22 63)(8 64 23 32)(9 41 36 49)(10 50 37 42)(11 43 38 51)(12 52 39 44)(13 45 40 53)(14 54 33 46)(15 47 34 55)(16 56 35 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 64 25 23 24 32 57 8)(2 7 58 31 17 22 26 63)(3 62 27 21 18 30 59 6)(4 5 60 29 19 20 28 61)(9 48 41 16 36 56 49 35)(10 34 50 55 37 15 42 47)(11 46 43 14 38 54 51 33)(12 40 52 53 39 13 44 45)

G:=sub<Sym(64)| (1,53,20,41)(2,50,21,46)(3,55,22,43)(4,52,23,48)(5,49,24,45)(6,54,17,42)(7,51,18,47)(8,56,19,44)(9,57,40,29)(10,62,33,26)(11,59,34,31)(12,64,35,28)(13,61,36,25)(14,58,37,30)(15,63,38,27)(16,60,39,32), (1,25,24,57)(2,58,17,26)(3,27,18,59)(4,60,19,28)(5,29,20,61)(6,62,21,30)(7,31,22,63)(8,64,23,32)(9,41,36,49)(10,50,37,42)(11,43,38,51)(12,52,39,44)(13,45,40,53)(14,54,33,46)(15,47,34,55)(16,56,35,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,64,25,23,24,32,57,8)(2,7,58,31,17,22,26,63)(3,62,27,21,18,30,59,6)(4,5,60,29,19,20,28,61)(9,48,41,16,36,56,49,35)(10,34,50,55,37,15,42,47)(11,46,43,14,38,54,51,33)(12,40,52,53,39,13,44,45)>;

G:=Group( (1,53,20,41)(2,50,21,46)(3,55,22,43)(4,52,23,48)(5,49,24,45)(6,54,17,42)(7,51,18,47)(8,56,19,44)(9,57,40,29)(10,62,33,26)(11,59,34,31)(12,64,35,28)(13,61,36,25)(14,58,37,30)(15,63,38,27)(16,60,39,32), (1,25,24,57)(2,58,17,26)(3,27,18,59)(4,60,19,28)(5,29,20,61)(6,62,21,30)(7,31,22,63)(8,64,23,32)(9,41,36,49)(10,50,37,42)(11,43,38,51)(12,52,39,44)(13,45,40,53)(14,54,33,46)(15,47,34,55)(16,56,35,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,64,25,23,24,32,57,8)(2,7,58,31,17,22,26,63)(3,62,27,21,18,30,59,6)(4,5,60,29,19,20,28,61)(9,48,41,16,36,56,49,35)(10,34,50,55,37,15,42,47)(11,46,43,14,38,54,51,33)(12,40,52,53,39,13,44,45) );

G=PermutationGroup([[(1,53,20,41),(2,50,21,46),(3,55,22,43),(4,52,23,48),(5,49,24,45),(6,54,17,42),(7,51,18,47),(8,56,19,44),(9,57,40,29),(10,62,33,26),(11,59,34,31),(12,64,35,28),(13,61,36,25),(14,58,37,30),(15,63,38,27),(16,60,39,32)], [(1,25,24,57),(2,58,17,26),(3,27,18,59),(4,60,19,28),(5,29,20,61),(6,62,21,30),(7,31,22,63),(8,64,23,32),(9,41,36,49),(10,50,37,42),(11,43,38,51),(12,52,39,44),(13,45,40,53),(14,54,33,46),(15,47,34,55),(16,56,35,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,64,25,23,24,32,57,8),(2,7,58,31,17,22,26,63),(3,62,27,21,18,30,59,6),(4,5,60,29,19,20,28,61),(9,48,41,16,36,56,49,35),(10,34,50,55,37,15,42,47),(11,46,43,14,38,54,51,33),(12,40,52,53,39,13,44,45)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4H4I4J4K4L8A···8H8I8J8K8L
order122222224···444448···88888
size111122882···244884···48888

32 irreducible representations

dim11111111222444
type+++++++++-+
imageC1C2C2C2C2C2C4C4D4D4C4○D8C8⋊C22C8.C22C4.D4
kernelC42.80D4C4.D8C4.6Q16C2×C4⋊C8C42.6C4C22.26C24C4.4D4C2×C4○D4C42C22×C4C4C4C4C22
# reps12211144228112

Matrix representation of C42.80D4 in GL6(𝔽17)

400000
040000
0000160
0001015
0016000
0000016
,
010000
1600000
00161600
002100
00011615
001011
,
14140000
1430000
000011
00111615
00160016
00111616
,
330000
1430000
000011
001616160
00160016
0001601

G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,16,0,0,0,0,0,0,15,0,16],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,16,2,0,1,0,0,16,1,1,0,0,0,0,0,16,1,0,0,0,0,15,1],[14,14,0,0,0,0,14,3,0,0,0,0,0,0,0,1,16,1,0,0,0,1,0,1,0,0,1,16,0,16,0,0,1,15,16,16],[3,14,0,0,0,0,3,3,0,0,0,0,0,0,0,16,16,0,0,0,0,16,0,16,0,0,1,16,0,0,0,0,1,0,16,1] >;

C42.80D4 in GAP, Magma, Sage, TeX

C_4^2._{80}D_4
% in TeX

G:=Group("C4^2.80D4");
// GroupNames label

G:=SmallGroup(128,283);
// by ID

G=gap.SmallGroup(128,283);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,758,352,1123,1018,248,1971,242]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2*b^2,d^2=b,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^2,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=a^2*b^-1*c^3>;
// generators/relations

׿
×
𝔽